GREEN LIQUOR

Typical end products
Unbleached kraft pulp, bleached kraft pulp.

Chemical curve: R.I. per Green liquor density g/l at ref. temp. of 20˚C

<table>
<thead>
<tr>
<th>Density g/l</th>
<th>R.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.33 1.34 1.35 1.36 1.37 1.38 1.39 1.4</td>
<td>25 50 75 100 125 150 175 200 225</td>
</tr>
</tbody>
</table>

Introduction

The chemical recovery process ensures the operation and economic viability of the mill. In this process, the pulping chemicals are regenerated from the inorganics dissolved in the spent liquor, and the organic material is burned to generate steam. The process consists of an evaporation plant, a recovery boiler and a causticizing plant.

In the causticizing plant sodium carbonate (Na₂CO₃) is converted into the active cooking chemical, sodium hydroxide (NaOH). The process can be divided in three main parts: slaking, causticizing and liquor preparation. The result is the white liquor which is used in the digester. High quality white liquor with consistent and high strength improves the productivity of the whole mill.

Application

The smelt from the recovery boiler is dissolved in weak wash in the dissolving tank to produce green liquor. The raw green liquor, consisting mostly of sodium carbonate and sodium sulfide, is commonly pumped into a stabilization tank to even out fluctuations in density and temperature, and to ensure a more constant liquor composition to the causticizing process.

The green liquor clarifier aims to obtain a good clarified green liquor for the slaker. This also reduces dregs carryover which causes problems in downstream equipment. In the slaker, the clarified green liquor is brought into contact with reburned lime. This slaking reaction converts the green liquor into white liquor by converting sodium carbonate into sodium hydroxide, an active pulping chemical. Impurities known as grits are also separated at this stage. The mixture moves on to the causticizers to provide enough resident time for increasing the causticizing degree to 80-82%.
The white liquor is produced by the separation of the lime mud, CaCO₃, a by-product of causticizing, which is converted back into lime using a lime kiln.

The causticizing process is controlled by the slaker operation, which in turn depends on the concentration of the raw green liquor’s Total Titratable Alkali (TTA). The goal is to stabilize the density or TTA concentration in the green liquor feed to the slaker to avoid overliming and ensure a safe operation. TTA measurements in the main green liquor lines (from dissolving tank and clarifier) are required for control purposes.

Instrumentation and installation

The K-Patents SAFE-DRIVE Process Refractometer PR-23-SD measures the density or TTA concentration of green liquor at two stages of the process: after the green liquor dissolving tank, and after the green liquor clarifier at the slaker feed.

The refractometer's sensor is mounted directly in the pipelines for in-line measurements allowing real-time and active control to meet the target TTA.

Pirssonite formation in the pipe walls is a frequent problem for instrumentation in green liquor application. This may be as much as an inch per week. Traditional methods such as density meters and dP are not reliable due to constant scaling inside the instrument's tubes and drifting of the measurement.

The SAFE-DRIVE refractometer is designed for accurate measurement in these difficult scaling conditions. The digital measurement is unaffected by bubbles, suspended particles or color changes to the green liquor.

Automatic prism is required to keep the prism clean, securing representative samples and continuous information for real-time control. K-Patents recommends using blow out water or intermediate feed water to the boiler as the water source for the prism wash system (around 30-50 bars and above 90 °C). Typical measurement range is 100-150 g/l (6.0-8.5 lb/ft³) and the process temperature is 85 °C (185 °F).

Effective causticizing control improves the quality and stability of white liquor, decreases operating costs and increases pulping efficiency. Well performed lime dosage control reduces the recirculation flow of lime in the process, leading to less lime returning in the lime kiln and decreased energy consumption.

<table>
<thead>
<tr>
<th>Instrumentation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-Patents SAFE-DRIVE Process Refractometer PR-23-SD</td>
<td>for measuring black liquor dry solids and green liquor density or TTA in kraft chemical recovery process. K-Patents SAFE-DRIVE design allows for safe and easy insertion and retraction of the sensor under full operating pressure without having to shut down the process.</td>
</tr>
<tr>
<td>Automatic prism wash</td>
<td>For dissolving tank installations: prism wash with hot water. The components of a wash water system are a sensor with integral water nozzle mounted at the sensor head, a HPV wash system, a power relay unit and an indicating transmitter equipped with relays. K-Patents recommends using blow out water or intermediate feed water to the boiler as the water source for the wash system (around 30-50 bars and above 90 °C). If none of these are available on site, please contact your local representative or K-Patents for advice. For slaker installations: prism wash with steam. The components of a steam wash system are a sensor with integral steam nozzle mounted at the SAFE-DRIVE valve, a shut-off valve for steam line and an indicating transmitter equipped with relays to drive the wash valves.</td>
</tr>
<tr>
<td>Measurement range</td>
<td>Refractive Index (nD) 1.3200 – 1.5300, corresponding to 0-100 % by weight.</td>
</tr>
</tbody>
</table>